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Abstract

This paper revolves around insights on graph colorings and acyclic orientations as introduced by Richard P.

Stanley in his 1973 paper. We motivate the subject with a famous problem, then introduce preliminaries. The

main content is two theorems, which will be fully proved in this paper. The first relates acyclic orientations

on a graph to the chromatic polynomial evaluation at −1. The second is an equality on the number of

labeled acyclic digraphs on n-vertex graphs. Finally, further work will be displayed. The paper is intended

for undergraduates and will assume some knowledge of graph theory.

1 Background and Motivation

We start with a famous problem.

Four Color Question. We are given a 2-D space divided into shapes. What is the minimum number

of colors necessary to paint all the shapes such that no two bordering shapes (diagonals-only do not count as

adjacent) have the same color?

Figure 1: A map of the contiguous United States, created using [Map23], which paints each of the 48 states with

one of 4 colors, such that no bordering states share the same color.

In Fig. 1 we see a contiguous US map with four colors. In fact, we can prove that, for any 2-D surface

partitioned into shapes, we need at most four colors. This theorem was famously demonstrated by Kenneth

Appel and Wolfgang Haken in 1976 in [AH78] through algorithmic methods.

A helpful breakthrough in proving conjectures on minimum number of colors required is to swap the map

for an equivalent graph. Specifically, each shape is a vertex, and an edge is connected between two vertices if

1



and only if the two shapes share a border. In this way, whether two shapes can be colored the same becomes a

question of whether two vertices are adjacent (i.e. have an edge between them), which is far easier to manage.

Figure 2: Left: A map of the regions of mainland France, using [Map23]. Four colors are necessary and sufficient

to color each region so that no bordering regions share the same color. Right: The same map, using a graph

instead. Vertices are colored according to their coloring on the France map.

2 Preliminaries and Context

Now that we can represent any map as a graph G, we formalize the notation with the following concept:

The chromatic number of a graph G is defined as the minimum number of colors λ∗ necessary such that

each vertex of G can be colored with one of the colors {1, 2, . . . , λ∗} with no two adjacent vertices the same color.

Example We can see that the chromatic number of the map of the contiguous United States (or, more

accurately, its equivalent graph) is 4. To see that it is no lower, consider Nevada. It has an odd number of

neighbors. Suppose for contradiction that the US map could be colored with 3 colors (red, blue, yellow) instead.

Without loss of generality, let Nevada be yellow and California be blue. Then, Oregon must be red, Idaho blue,

Utah red, and Arizona blue to avoid bordering states’ having the same colors. But then California and Arizona,

which border, have the same color, contradiction. Thus, the US map requires 4 colors, and as we saw in Fig. 1,

a valid construction was made.

Observation More generally, if in graph G there exists a vertex v connected to each of vertices v1, v2, . . . , vn

with n odd and v1, v2, . . . , vn forming an odd-length cycle, at least four colors are necessary to color G.

Afterwards, we may consider, given a certain number of colors λ to color the vertices of G with, how many

ways there are to do so.

Define the chromatic polynomial of a graph G, χG, as the unique polynomial so that χG(λ) (the subscript

is sometimes omitted for convenience) equals the number of ways G’s vertices can be colored with one of the λ

colors such that no two adjacent vertices have the same color.
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Example For the clique on 4 vertices K4, χ(λ) = λ(λ − 1)(λ − 2)(λ − 3). Label them A, B, C, D, in

clockwise order. Select any vertex, WLOG B. There are λ ways to color it, as no restrictions are applied.

Then consider D; it can be one of λ − 1 colors: any except the color of B. Apply this logic to C and A,

which have λ− 2 and λ− 3 options, respectively. We could also have determined the number of remaining feasi-

ble colors in a different order, say, D, A, B, C. The answer is the same. See Fig. 3 for a depiction of this scenario.

Figure 3: The clique K4, with labeled vertices.

Observation If the chromatic number of G is λ∗, then for all 0 ≤ λ < λ∗, χG(λ) = 0. In other words, there

are 0 ways to color G’s vertices with fewer colors than necessary.

Example For K4, whose chromatic number is 4 (because every vertex must have a different color), χK4
(0) =

χK4
(1) = χK4

(2) = χK4
(3) = 0.

Observation χG(λ) is not necessarily equal to 0 for negative λ. For K4, χK4
(λ) = λ(λ− 1)(λ− 2)(λ− 3) at

λ = −1 actually yields −1 · (−2) · (−3) · (−4) = 24. Note that χ is defined for negative λ! This will be important

in coming sections.

In the early 1970s, chromatic polynomials, a new venture in themselves, represented one of many directions of

study in graph theory. Richard P. Stanley, in [Sta06], studied the relationships between chromatic polynomials

and other familiar concepts in graph theory, and derived several surprising results. These unexpected connections

allow for easy calculation of certain quantities, which will be discussed in detail in the following sections.

A directed graph, or digraph, is a graph G for which every edge in G is assigned a direction; in other words,

the edge between v1 and v2 either points (with an arrow) from v1 towards v2 (denoted v1 → v2) or from v2

towards v1 (denoted v2 → v1). Fig. 4 is a directed graph.

Figure 4: The clique K4, with labeled vertices and directed edges. This is an orientation, but not an acyclic

orientation (A → B → C → A forms a cycle).
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An orientation of a graph G is an assignment of a direction/arrow to each edge e = (u, v) ∈ G such that e

points either from u to v (denoted u → v), or from v to u (denoted v → u). We can think of this as ‘drawing an

arrow’ one way or the other for e.

An acyclic orientation of a graph G is an orientation of G such that no cycle is formed by the edges. In

other words, there does not exist a structure v1 → v2 → · · · → vn → v1 for n ≥ 2.

Observation Any acyclic orientation of a graph is a digraph (see Fig. 4 for an example).

Observation It is always possible to generate an acyclic orientation for any graph: one construction is to

label the vertices with different numbers, and for any edge, draw arrows towards the larger number. Fig. 5 is an

example, with arrows going to later letters in the alphabet.

Figure 5: A labeled acyclic digraph on K4, constructed using the algorithm in the preceding paragraph.

The two theorems I will prove are presented below. These are both results in [Sta06]. There are still a few

definitions I will provide, such as χ̄(λ), which will be done in individual theorem sections.

Theorem 1 [Sta06, Theorem 1.2, Corollary 1.3] For all non-negative integers λ, χ̄(λ) = (−1)|V |χ(−λ).

Importantly, this means (−1)|V |χG(−1) is the number of acyclic orientations of G.

Theorem 2 [Sta06, Proposition 2.1] If f(n) is the number of labeled acyclic directed graphs with n

vertices, then
∞∑

n=0

(
f(n)

xn

n!
2(

n
2)
)
·

∞∑
n=0

(
(−1)n

xn

n!
2(

n
2)
)

= 1.

The paper is structured as follows. We start with background and motivation on the problem, then explain

preliminary definitions in an introduction. Now we are at the end of the introduction. The third section will be

a statement and proof of Theorem 1; the fourth section, a statement and proof of Theorem 2. A final section

will conclude and explore related work.

3 Equivalence of χ̄(λ) and acyclic orientations of a graph (Theorem 1)

Before we introduce the proof, let’s finish the setup. We use a lemma which we addressed in Talk 2.

Lemma 1 [Sta06, Proposition 1.1] The chromatic polynomial χG(λ) equals the number of pairs (M,O),

with M some coloring of the vertices of G and O an acyclic orientation of G, under the condition that if u → v
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in O, then cu > cv. Here ci refers to the color number of vertex i.

Note: If (M,O) is a valid pair in Lemma 1, then M and O are said to be compatible with each other.

Color Example If we have λ = 3 colors, and blue is given value 3, green 2, and red 1, then if there is a blue

vertex and a green vertex, in a valid pair (M,O), it is necessary to have the arrow point from the green vertex

towards the blue vertex because 2 < 3.

Example In Fig. 6, the chromatic polynomial for the graph is λ(λ− 1)2(λ− 2). One way (among many) to

determine χ is to start at vertex 3, which has λ choices; then, vertex 4 has λ − 1 choices. If we go to vertex 2

next, there are λ− 1 options (because vertex 4 will reduce the color possibilities of vertex 2 by 1, but vertex 3,

which is not adjacent to vertex 2, has no effect); then, vertex 1 has λ− 2 choices. Suppose we had λ = 3 colors,

and blue was highest with value 3, green with value 2, and red with value 1. Then there are 12 possibilities,

depicted in Fig. 7. This can be found in one of two ways: start with an acyclic orientation, and then ’fill in’ the

colors in all possible ways; or start with a coloring, and ’fit’ arrows to correspond to the arrows. The latter is

usually easier, because arrows are uniquely determined by what their colors are.

Figure 6: A small graph with 4 vertices and 4 edges.

Figure 7: The 12 possible pairs (M,O) on the graph in Fig. 6, with each M some coloring of the vertices of the

graph, and O an acyclic orientation of the graph. M and O are compatible with each other. Here λ = 3, with

the colors blue > green > red.

Proof of Lemma 1. We use a bijection.

Every pair (M,O) corresponds to one correct coloring of the vertices of G: Suppose we have a pair (M,O).

Then, M uniquely determines the coloring of the vertices of G, while O establishes the unique valid orientation of

the edges on these colors (because we know no two adjacent vertices have the same color; thus, one color number

is higher, and the arrow points away from it).
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Every valid coloring of the vertices of G corresponds to one pair (M,O): Suppose we have a valid coloring.

Then there must exist exactly one acyclic orientation O corresponding to this coloring, as for each edge, one color

is of a higher color number than the other, and this dictates the direction that edge must point in. All edges are

independent. ■

Lemma 1 motivates the following definition.

The chromatic bar χ̄G(λ) is the number of pairs (M,O) with the same definition as Lemma 1, except that

cu ≥ cv. In other words, the difference between this and Lemma 1’s constraints is that here, we allow colors of

neighboring vertices to be equal; this represents a relaxation of Lemma 1.

We also note some well-known properties on chromatic polynomials, as found in [Big93].

i) Single Vertex Coloring Property: For G0 = a graph with 1 vertex (and no edges), χG0(λ) = λ.

ii) Disjoint Graph Coloring Property: For any disjoint graphs G1 and G2, χG1⊔G2
(λ) = χG1

(λ)χG2
(λ).

iii) Deletion/Contraction Property: Given a graph G and any edge e ∈ G, we have χG(λ) = χG−e(λ)−
χG/e(λ). G−e (the deletion) is G without edge e, while G/e (the contraction) is G with e and its two neighboring

vertices ’shrunk’ into a point.

The three properties uniquely determine χ. In other words, if some polynomial f satisfies these three prop-

erties, then it must be the chromatic polynomial.

Before we continue, we give an example of the deletion/contraction property. Let λ = 3. Consider the

small graph G we saw from Fig. 6, also left side of Fig. 8. Suppose the edge e between vertices 3 and 4 was

contracted, so that the two vertices and e formed a single vertex C (see right graph in Fig. 8). It is not hard

to see that the chromatic polynomial on G/e with λ = 3 equals 6: each of the 3! = 6 color combinations on the

vertices yields a valid acyclic orientation of G/e. Then, consider the graph G − e: the edge is removed. The

chromatic polynomial on G− e is 3! · 3 = 18, because the subgraph formed by the vertices 1, 2, 4 is the identical

scenario to what we just discussed with G/e, while vertex 3 can be any color, and given property ii) of χ, or

the Disjoint Graph Coloring Property (i.e. independence of disjoint graphs), we have 6 · 3 possibilities. Putting

this all together, we have χG(3) = 18 − 6 = 12, which matches the answer given by our chromatic polynomial

χG(λ) = λ(λ− 1)2(λ− 2) = 3 · 22 · 1 = 12.

Figure 8: Left: The graph from Fig. 6, call it G. Middle: The contraction graph G/e, where e is the edge

connecting vertices 3 and 3. The resulting contraction, which is a vertex, has been labeled C. Right: The

deletion graph G− e.
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Theorem 1 [Sta06, Theorem 1.2] For all non-negative integers λ, χ̄(λ) = (−1)|V |χ(−λ).

Example Consider the graph from Fig. 6 (also seen as the left graph of Fig. 8), call it G. Let λ = 1

(let the single color be orange WLOG). We want to find the chromatic bar on G of λ = 1. Fig. 9 shows

the enumeration of these graphs, and there are 12 of them. This matches with Theorem 1, which claims

χ̄(−1) = (−1)4χ(−1) = −1 · (−2)2 · (−3) = 12. In fact, the 12 possibilities here are just the acyclic orien-

tations from Fig. 7, except all the vertices are colored orange.

Figure 9: For λ = 1 on the graph in Fig. 6, the 12 valid acyclic orientations.

As will be found from the corollary after the proof of Theorem 1, it is this case λ = 1 we are most concerned

about, as it equals the number of acyclic orientations on a graph. This relation also holds true for λ = 2 and

higher values, but seeing that enumeration on λ = 2 will already yield −2 · (−3)2 · (−4) = 72 possibilities, we

forgo such an example.

Proof of Theorem 1 From our discussion of the three properties above, if we can prove χ̄ satisfies them,

then χ̄ must be a chromatic polynomial.

The theorem states that χ̄ is exactly χ(−λ), with maybe a negative sign. This is to ensure that both sides

of the equality are positive. Furthermore, observe that χ̄’s only difference from χ is the allowance of cu = cv.

Therefore, if we can prove the same three properties for χ̄ as we did for the chromatic polynomial, we will be

done. There is a slight change: Rather than a minus sign between the two terms in the third property, we use a

plus sign. This is correct because we allow colors to be the same.

Property i): This is not hard to see, as we have one vertex and no edges, and given λ colors, G can be one of

λ colors as well.

Property ii): This follows from independence of G1 and G2 as graphs.

The proof of property iii) is significantly longer and will take up the rest of the proof. Notation-wise, let the

LHS (or LHS tally) be χG(λ), and let the RHS (or RHS tally) be χG−e(λ)− χG/e(λ).

Property iii): First, take some arbitrary edge e ∈ G. Let G′ = G − e for ease of notation. Call the vertices

adjacent to e v1 and v2. The graph of interest on the LHS χ̄G(λ) is composed of two separate cases: Either e

goes v1 → v2 in G (call this directed graph on G DGr), or e goes v2 → v1 (call this digraph DGl). Let O be an
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arbitrary orientation on G′ with (M,O) a valid pair in the chromatic bar. Let Or be O including v1 → v2, and

Ol be O including v2 → v1. An example of this configuration is introduced in Fig. 10.

Figure 10: Left: A graph G, with a certain edge e selected. Center: The graph, with e removed. Right: The

graph G− e, with the edge ‘put back’, either pointing from v2 → v1 (as in the green edge of Ol) or vice versa (as

in the red edge of Or).

We now determine whether (M,Ol), (M,Or), both, or neither are valid pairs in the chromatic bar. We are

concerned with cv1 and cv2 .

To be more precise, given a valid pair (M,O) (corresponding to the LHS), we wish to count how many valid

pairs among (M,Ol) and (M,Or) exist (corresponding to the RHS, as we will demonstrate). Another way to

think about this: We have a full graph without any edge removals in G on the LHS. Meanwhile, the RHS contains

a term involving G′ (G removed e), and another term involving a graph with contracted e. The counting of valid

pairs among (M,Ol) and (M,Or) helps determine χ̄G′(λ).

Suppose cv1 > cv2
. By the definition of the chromatic bar, (M,Ol) is invalid. It remains to prove that (M,Or)

is valid: we need to show that Or is not cyclic (since Ol is invalid, we do not care about Ol’s cyclicity). Indeed,

suppose there existed a cycle v1 → v2 → w1 → w2 → · · · → v1 in Or. However, looking at their colors, this

means cv1 > cv2 ≥ · · · ≥ cv1 , which is absurd. Thus, Or is acyclic and we add 1 to our RHS tally.

Suppose cv2 > cv1 . Similarly to our above case, we obtain (M,Or) is invalid, while Ol is acyclic and (M,Ol)

is valid. We add 1 to our RHS tally.

Finally, suppose cv2 = cv1 . We claim that at least one of Ol, Or is acyclic. Suppose that both were

cyclic; then, Ol has a directed cycle v2 → v1 → w1 → w1 → · · · → v2, while Or has a directed cycle

v1 → v2 → x1 → x2 → · · · → v1. Combining the two, we see that a directed cycle exists from v1 → w1 → w2 →
· · · → v2 → x1 → x2 → · · · → v1, but this means O was not acyclic, which is a contradiction. This proves our

claim. We add at least 1 to our RHS tally.

At this point, we see that the number of valid (M,O), which equals χ̄G(λ), is equal to χ̄G′(λ). Now, to include

the addition of the χ̄G/e(λ), we will demonstrate that, for exactly χ̄G/e(λ) pairs of (M,O), the corresponding

(M,Ol) and (M,Or) are both valid (i.e. Ol and Or are acyclic). These can only come from the final case when

cv2
= cv1 , as it is the only one with ”at least 1” added to our tally. Finishing this will give us the sum we require.

Critically, note that the edges of G′ are equal to the edges of G/e (in both cases, e no longer exists; it is deleted

and fused into v+ along with v1 and v2, respectively). See Fig. 11 for a graphic depiction of this circumstance.
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Figure 11: Left: The original graph G, with the edge e of concern. Middle graphs: The two possibilities for a

directed edge for e. Right: The contraction G/e, with a new vertex v+ replacing v1, v2, and e.

Now, consider some (M,O). We define aM ′ byM ′(v) = M(v) for all v inG′, whileM ′(v+) = M(v1) = M(v2);

in other words, all vertices in G have their original color. As for O′, this is defined identically to O: the direction

of each edge is preserved, and that’s it because of the critical note above. It is not hard to see that we have a

valid construction mechanism for both directions in F . Therefore, a bijection between each (M,O) with both

Ol, Or acyclic and (M,Ol) and (M,Or) valid in the chromatic bar and each (M ′, O′) valid for the chromatic

bar on G/e has been established. As a result, we conclude that to the RHS, we can add an additional χ̄G/e(λ)

to the tally. ■

At the end of the introduction we stated an important corollary: that, upon finishing the proof, (−1)|V |χG(−1)

is the number of acyclic orientations of G. We prove it below.

If we substitute λ = 1 into Theorem 1’s equation, χ̄(λ) = (−1)|V |χ(−λ), we obtain χ̄(1) = (−1)|V |χ(−1). We

claim that χ̄(1) is the number of acyclic orientations of G. If we have an acyclic orientation, then coloring all of

its vertices the same color (the only one allowed in λ = 1) is valid. If we color all vertices the same color, then any

acyclic orientation works, as the equality case allowable under the chromatic bar holds. Therefore, (−1)|V |χ(−1)

equals the number of acyclic orientations of G. ■

4 Summation with number of labeled acyclic digraphs with n vertices

The theorem above finds a fast way of computing the number of acyclic orientations of a graph. If we can

determine its chromatic polynomial, which can almost always be done in similar fashion as we did for K4 - that

is, an explicit closed form found for a graph - then we merely need to substitute λ = −1 and possibly correct for

sign to find this quantity.

We also wish to find a quick way of finding the number of labeled acyclic digraphs with n vertices, which will

be called f(n). One way to think about the problem is to imagine n vertices, then construct some edges between

the vertices, and give them each a direction, as in Fig. 12.

Observation There are n labeled vertices; thus, there are
(
n
2

)
possible edges: each is either drawn in the

graph, or not. This means there are 2(
n
2) different non-directed labeled graphs on these n vertices. Introducing

an orientation on any graph (i.e. a direction to each edge) will non-strictly increase this number even further: for
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each non-directed graph, there exists at least one labeled acyclic digraph (consider all arrows pointing towards

higher vertex number). We can say there is o(2(
n
2)) labeled acyclic digraphs on n vertices.

Figure 12: Left: n vertices in space. Center: n vertices with some edges between them selected. Right: Assigning

a direction to those chosen edges.

Theorem 2 [Sta06, Proposition 2.1] If f(n) is the number of labeled acyclic directed graphs with n

vertices, then

∞∑
n=0

(
f(n)

xn

n!
2(

n
2)
)
·

∞∑
n=0

(
(−1)n

xn

n!
2(

n
2)
)

= 1.

The proof derives mostly not from [Sta06], but from [Rea60] and [BG71].

The equality does not determine f(n) for any n directly. Instead, it sheds light on the behavior of f .

Proof of Theorem 2. First, observe by the extension on our proof of Theorem 1 that

f(n) = (−1)n
∑
G

χ(G,−1)

where G represents one of the 2(
n
2) possible graphs for that choice of n.

Rather than consider the quantity
∑

G χ(G,−1), we consider Mn(k) =
∑

G χ(G, k), with k representing the

number of colors allowed. Here k serves the same function as λ; the convention in all three papers mentioned

above is to use k.

Suppose there were ni nodes which had the color i in G, with 1 ≤ i ≤ k. Let the partition of nodes into colors

for a particular configuration be denoted Pnα. We have
∑

ni = k. Furthermore, consider edges eab, edges that

go between nodes with color a and b (no specificity in arrow direction). Let E =
∑

a<b eab, where we need the

a < b constraint because we are not giving direction to edges between colors a and b. On a high level, we first

determine the colors of the nodes, and then we decide where to put edges given we must have a fixed number of

edges, as well as a fixed number of edges going between any ‘pair’ of colors.

To give nodes their colors so that there are ni nodes for color i, this has n! · (
∏

i ni!)
−1

ways. Now, for the

edges, we need to have eab edges, and we can draw edges between nanb sets of nodes. Thus, we have
(
nanb

eab

)
ways

to do this for each eab.
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Putting this all together, for a certain value of E, we have

n! ·

(∏
i

ni!

)−1

·
∏
a<b

(
nanb

eab

)
choices. Now, we must add this over all 0 ≤ E ≤

(
n
2

)
. For a shortcut, observe that

(
nanb

eab

)
is, using a generating

function, the coefficient of xeab on (1 + x)nanb . Therefore, when we sum over E, we are finding

n! ·

(∏
i

ni!

)−1

·
∏
a<b

(1 + x)nanb = n! ·

(∏
i

ni!

)−1

· (1 + x)
∑

nanb

by turning the product up into a summation on the exponent.

Observe that
∑

nanb requires a and b to be different; therefore, it is equal to 0.5((
∑

ni)
2 −

∑
n2
i ). As a

result, we can change the rightmost term in the product (the one with base 1 + x) to (1 + x)0.5((
∑

ni)
2−

∑
n2
i ); as

we sum over E, this will yield

n! ·

(∏
i

ni!

)−1

·
(
0.5n2 − 0.5

∑
n2
i

E

)
.

However, this is an unwieldy formula. In particular, we would need to sum that expression over all possible

partitions of nodes into colors Pnα. This is difficult, so we relax the edges constraint. Instead, suppose we just

considered k-colored graphs which can be created with partition Pnα. Then we take this expression and sum it

up over all E, which, by the binomial coefficient sum formula
∑n

i=0

(
a
i

)
= 2a, gives

n! ·

(∏
i

ni!

)−1

· 20.5n
2−0.5

∑
n2
i

Now, we can sum up over n to find Mn(k), which equals

∑
n

n! ·

(∏
i

ni!

)−1

· 20.5n
2−0.5

∑
n2
i


We can apply the coefficient argument one more time on this quantity and realize that Mn(k) equals n! ·20.5n

2

multiplied by the coefficient of xn in the summation
(∑∞

i=0 x
i · (i!)−1 · 2−0.5i2

)k
.

This equivalence gives us the full formation of the entire equality:

∞∑
n=0

2−0.5n2

Mn(k)
xn

n!
=

( ∞∑
n=0

xn · (n!)−1 · 2−0.5n2

)k

We make a switch of variables. Consider x′ =
√
2x. Then, our term xn equals (x′)n ·2−0.5n. This allows us to

‘reduce’ the exponent on the 2 on both sides from −0.5n2 to the desired
(
n
2

)
, and a final summation over k = 0

to n with some simplification will lead us to the desired result. ■
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5 Conclusion

In this paper we have demonstrated two theorems for calculation of niche but important properties on general

graphs. These two are some of the earlier results in Stanley’s famous landmark paper [Sta95]. Later, symmetric

functions are used for generalizing chromatic polynomials and their properties. This concludes on a wider dis-

cussion for negative numbers on chromatic polynomials. Some conjectures and open directions relating equalities

of the nature discussed in this paper revolve around chromatic symmetric functions and their varieties. The

applications are wide, from analyzing Dyck paths in [CMP23] to working with matroids in [NZ21]. Another

direction is Stanley’s claw contractibility, introduced late in [Sta95]; it is analyzed in [RS03] and discusses a

closure operation on claw-free graphs. Claw contractibility is an extension of a series of equalities, including

Theorems 1 and 2, constructed in [Sta95].
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